II Semester M.Sc. Degree Examination, June 2016
 (R.N.S.) (2011 - 12 and Onwards)
 MATHEMATICS
 M - 204 : Partial Differential Equations

Time : 3 Hours
Max. Marks : 80

Instructions: 1) Answer any five questions choosing atleast two from each Part.
2) All questions carry equal marks.

PART - A

1. a) Define linear, semi-linear, quasi linear and non-linear partial differential equation of first order. Explain the method of characteristics for semi-linear equation $a(x, y) u_{x}+b(x, y) u_{y}=c(x, y, u)$.
b) Solve the following by the method of characteristics:
i) $x u_{x}+(x+y) u_{y}=u+1$ with $u=x^{2}$ on $y=0$
ii) $y u_{x}+x u_{y}=u$ with the data $u(x, 0)=x^{3}, u(0, y)=y^{3}$.

6
c) Solve the Cauchy problem $\left(u^{2}-y^{2}\right) u_{x}+x \cdot y u_{y}+x u=0$ with $u=y=x, x>0$.
2. a) Solve the IVP $u_{t}+u_{x} u=0$ with initial data $u(x, 0)=\left\{\begin{array}{ccc}1 & \text { for } & x<0 \\ 1-x & \text { for } & 0 \leq x \leq 1\end{array}\right.$.
b) Solve the non-linear Cauchy problem $u_{t}+u u_{x}=a u, x \in R, t>0 ; u(x, 0)=b x$ is $u=a b \times e^{-a t}$.
c) Solve the non-linear Cauchy problem $p q=u$ with $u=1$ on $y=-x$.
3. a) Classify and reduce the following equation into its canonical form given that $x^{2} u_{x x}-2 x y u_{x y}+y^{2} u_{y y}=\sin x$.
b) Classify the equation into hyperbolic, parabolic and elliptic equations $\mathrm{u}_{\mathrm{xx}}+\mathrm{x} \mathrm{u}_{\mathrm{yy}}=0$ for $\mathrm{x} \neq 0$. Reduce it to canonical form when $\mathrm{x}>0$.
c) Obtain the general solution of $u_{x x}=u_{y y}$.
4. a) Solve the linear equations :
i) $\left(D-D^{\prime}-1\right)\left(D-D^{\prime}-2\right) z=e^{2 x+y}\left(D \equiv \frac{\partial}{\partial x}, D^{\prime} \equiv \frac{\partial}{\partial y}\right)$,
ii) $\frac{\partial^{2} z}{\partial x^{2}}-\frac{\partial^{2} z}{\partial x \partial y}+\frac{\partial z}{\partial y}=x^{2}+y^{2}$.
b) Solve the following equations by Monge's method
i) $2 x^{2} r-5 x y s+2 y^{2} t+2(p x+q y)=0$,
ii) $(x-y)(x r-(x+y) s+y t)=(x+y)(p-q)$.
PART - B
5. a) Using an integral transform find the solution of the following:

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}} ; 0<x<\infty, t>0, \\
& \left.\begin{array}{rl}
u(0, t) & =f(t) \\
\frac{\partial u}{\partial x}(\infty, t) & =0
\end{array}\right\}, t>0, \\
& \left.\begin{array}{rl}
u(x, 0) & =0 \\
\frac{\partial u}{\partial t}(x, 0) & =0
\end{array}\right\}, 0<x<\infty .
\end{aligned}
$$

b) Show that separation of variables method when used in the case of threedimensional wave equation in cylindrical polar co-ordinates leads to the classical Bessel equation.
6. a) State the Dirichlet problem, involving a Laplace equation for a circle, and solve the same.
b) Solve by the method of separation of variables the BVP $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0,0<x<a$, $0<y<b$
$\left.\begin{array}{l}u(x, 0)=x \\ u(x, b)=0\end{array}\right\}, 0<x<a$,
$\left.\begin{array}{l}u(0, y)=0 \\ u(a, y)=0\end{array}\right\}, 0<y<b$.
7. a) Obtain the solution of the Cauchy problem $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}} ;-\infty<x<\infty, t>0$, $u(x, 0)=f(x),-\infty<x<\infty$ by using infinite Fourier transform.
b) Illustrate Green's function method of solving a certain class of PDEs. Use a suitable example from hyperbolic or elliptic or parabolic equations.
8. a) Using any successive approximation method find a two-term solution of the following: $x u_{x}+u_{y}=u^{2} ; u(x, 0)=x^{2}, u(0, y)=0$.
b) Make a weak formulation of the BVP $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=-u^{2}-1,0<x<a, 0<y<b$,
$\left.\begin{array}{l}u(0, y)=0 \\ u(a, y)=0\end{array}\right\}, 0<y<b$,
$\left.\begin{array}{l}u(x, 0)=0 \\ u(x, a)=0\end{array}\right\}, 0<x<a$
Outline the procedure of solving the weak formulation.

