II Semester M.Sc. Degree Examination, June 2016 (R.N.S.) (2011 – 12 and Onwards) MATHEMATICS

M – 204 : Partial Differential Equations

Time : 3 Hours

Instructions: 1) Answer **any five** questions choosing atleast **two** from **each** Part. 2) **All** questions carry **equal** marks.

PART-A

- 1. a) Define linear, semi-linear, quasi linear and non-linear partial differential equation of first order. Explain the method of characteristics for semi-linear equation $a(x, y) u_x + b(x, y) u_y = c(x, y, u).$
 - b) Solve the following by the method of characteristics :

i)
$$x u_x + (x + y) u_y = u + 1$$
 with $u = x^2$ on $y = 0$
ii) $y u_x + x u_y = u$ with the data $u(x, 0) = x^3$, $u(0, y) = y^3$. 6

- c) Solve the Cauchy problem $(u^2 y^2)u_x + x \cdot y u_y + xu = 0$ with u = y = x, x > 0. 4
- 2. a) Solve the IVP $u_t + u_x u = 0$ with initial data $u(x, 0) = \begin{cases} 1 & \text{for } x < 0 \\ 1 x & \text{for } 0 \le x \le 1 \end{cases}$ b) Solve the non-linear Cauchy problem $u_t + u u_x = au$, $x \in R$, t > 0; u(x, 0) = bx
 - c) Solve the non-linear Cauchy problem pq = u with u = 1 on y = -x. 5

3. a) Classify and reduce the following equation into its canonical form given that $x^2 u_{xx} - 2xy u_{xy} + y^2 u_{yy} = \sin x$.

- b) Classify the equation into hyperbolic, parabolic and elliptic equations $u_{xx} + x u_{yy} = 0$ for $x \neq 0$. Reduce it to canonical form when x > 0. 5
- c) Obtain the general solution of $u_{xx} = u_{yy}$.

is $u = ab \times e^{-at}$.

P.T.O.

5

PG – 715

Max. Marks: 80

6

6

4. a) Solve the linear equations :

i)
$$(D - D' - 1) (D - D' - 2) z = e^{2x + y} \left(D \equiv \frac{\partial}{\partial x}, D' \equiv \frac{\partial}{\partial y} \right),$$

ii) $\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial z}{\partial y} = x^2 + y^2.$
8

b) Solve the following equations by Monge's method

i)
$$2x^2 r - 5xy s + 2y^2 t + 2 (px + qy) = 0,$$

ii) $(x - y) (xr - (x + y) s + yt) = (x + y) (p - q).$ 8

PART-B

5. a) Using an integral transform find the solution of the following :

$$\begin{array}{l} \displaystyle \frac{\partial^2 u}{\partial t^2} = c^2 \; \frac{\partial^2 u}{\partial x^2}; \; 0 < x < \infty, \; t > 0, \\ \displaystyle \frac{u(0,t)}{\partial x} \; = \; f(t) \\ \displaystyle \frac{\partial u}{\partial x} \; (\infty,t) \; = \; 0 \\ \displaystyle \frac{\partial u}{\partial t} \; (\infty,0) \; = \; 0 \\ \displaystyle \frac{\partial u}{\partial t} \; (x,0) \; = \; 0 \\ \end{array} \right\}, \; t > 0,$$

- b) Show that separation of variables method when used in the case of threedimensional wave equation in cylindrical polar co-ordinates leads to the classical Bessel equation.
- 6. a) State the Dirichlet problem, involving a Laplace equation for a circle, and solve the same.
 - b) Solve by the method of separation of variables the BVP $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$, 0 < x < a,

$$0 < y < b$$

$$u(x, 0) = x$$

$$u(x, b) = 0$$
, $0 < x < a$,

$$u(0, y) = 0$$

$$u(a, y) = 0$$
, $0 < y < b$.

8

8

8

8

8

8

7. a) Obtain the solution of the Cauchy problem ^{∂u}/_{∂t} = ^{∂²u}/_{∂x²}; -∞ < x < ∞, t > 0, u(x, 0) = f(x), -∞ < x < ∞ by using infinite Fourier transform.
b) Illustrate Green's function method of solving a certain class of PDEs. Use a suitable example from hyperbolic or elliptic or parabolic equations.
8. a) Using any successive approximation method find a two-term solution of the

following :
$$x u_x + u_y = u^2$$
; $u(x, 0) = x^2$, $u(0, y) = 0$. 8

z CV

b) Make a weak formulation of the BVP $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = -u^2 - 1, 0 < x < a, 0 < y < b,$

$$\left. \begin{array}{l} u\left(0,\,y
ight) \,=\, 0 \\ u\left(a,\,y
ight) \,=\, 0 \end{array} \right\}, \, 0 < y < b,$$

$$u(x, 0) = 0$$

 $u(x, a) = 0$, $0 < x < a$

Outline the procedure of solving the weak formulation.

8